The Manneville map : topological , metric and algorithmic entropy Claudio Bonanno

نویسنده

  • Claudio Bonanno
چکیده

We study the Manneville map f(x) = x + x(mod 1), with z > 1, from a computational point of view, studying the behaviour of the Algorithmic Information Content. In particular, we consider a family of piecewise linear maps that gives examples of algorithmic behaviour ranging from the fully to the mildly chaotic, and show that the Manneville map is a member of this family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 02 The Manneville map : topological , metric and algorithmic entropy

We study the Manneville map f(x) = x + x(mod 1), with z > 1, from a computational point of view, studying the behaviour of the Algorithmic Information Content. In particular, we consider a family of piecewise linear maps that gives examples of algorithmic behaviour ranging from the fully to the mildly chaotic, and show that the Manneville map is a member of this family.

متن کامل

Algorithmic information for intermittent systems with an indifferent fixed point

Measuring the average information that is necessary to describe the behaviour of a dynamical system leads to a generalization of the Kolmogorov-Sinai entropy. This is particularly interesting when the system has null entropy and the information increases less than linearly with respect to time. We consider two classes of maps of the interval with an indifferent fixed point at the origin and an ...

متن کامل

2 5 Se p 20 06 COMPLEXITY FOR EXTENDED DYNAMICAL SYSTEMS

We consider dynamical systems for which the spatial extension plays an important role. For these systems, the notions of attractor, ǫ-entropy and topological entropy per unit time and volume have been introduced previously. In this paper we use the notion of Kolmogorov complexity to introduce, for extended dynamical systems, a notion of complexity per unit time and volume which plays the same r...

متن کامل

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

A Thermodynamic Definition of Topological Pressure for Non-compact Sets

We give a new definition of topological pressure for arbitrary (noncompact, non-invariant) Borel subsets of metric spaces. This new quantity is defined via a suitable variational principle, leading to an alternative definition of an equilibrium state. We study the properties of this new quantity and compare it with existing notions of topological pressure. We are particularly interested in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001